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 high graphic complexity  
     photo-realistic, wide FOV

low latency  
    < 25ms

high framerate  
    60+ FPS 



mobile devices cannot  
meet these demands
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FLASHBACK objectives
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mobility self-contained on mobile device

graphic quality desktop-level image quality 

responsiveness low end-to-end latency

energy efficiency long battery life, low thermal output

affordability no specialized hardware



Design



Mobile GPUs are constrained Mobile storage is abundant



key idea: 

pre-render all possible views  
for fast real-time replay



FLASHBACK design & challenges
• Pre-rendering   [offline] 

• infinite input space  

• Live playback   [runtime] 
• huge cache, fast retrieval 
• inexact query matching  

• Dynamic objects
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Pre-rendering
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pose 
(key)

frame 
(value)

: map pose to frame 

infinite input space



Pre-rendering
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input = 3D position 
3D orientation



Pre-rendering:  megaframes
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Pre-rendering:  megaframes
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Further reducing the input space
• Automate iteration over possible inputs 

• Prune unreachable player positions  

• Configurable quantization granularity
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Full-coverage frame cache is available at runtime



FLASHBACK design & challenges
• Pre-rendering   [offline] 

• infinite input space  

• Live playback   [runtime]
• huge cache, fast retrieval 
• inexact query matching  

• Dynamic objects
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Building the cache
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GPU
RAM

(Flash/SSD)

frame	cache

fast retrieval  
from huge cache

L3:  secondary storage – 9.2 ms

L2:  system RAM – 8.7ms

L1:  GPU VRAM – 0.35 ms 
• raw, decoded megaframes



Spatially indexing the cache
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• R-trees: fast, n-D 
nearest-neighbor 
search algorithm 

• Two cache indices: 
• Universal 
• GPU-only 

inexact  
query matching 
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Pre-rendering dynamic objects
• Extension of static scene 
• 7D input space: 

• 3D relative position 
• 3D object rotation 
• 1D animation sequence
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Automated megaframe capture

• Supports arbitrary motion  
paths and animations 
• but most are periodic
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CK.orientation

CK.pos

Anim.	List Anim.	List

Top-level	R-tree,	
position-indexed

Dynamic	
CacheKey

Mid-level	R-tree,	
orientation-indexed

Last-level	animation	list,
timestamp-indexed

Anim.	List

Retrieved
megaframe

• A 7D query is not meaningful 
• Decompose into chain of queries  

  

= Faster queries  
• Can prune search space  

at each level

Dynamic object cache indexing



Dynamic + static compositing
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sta$c& dynamic&
composite&
megaframe&



Evaluation



• HP Pavilion Mini + Oculus Rift DK2 
• Small weak computer approximates mobile device 
• Underperforms Samsung Galaxy S6 Gear VR 

Evaluation setup
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FLASHBACK 
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Local Rendering
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15x higher framerate
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8x lower latency



97x more energy efficient
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FLASHBACK maintains image quality 
• Measure perceived visual quality via SSIM 

• Compares rendered scene against a pristine image
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0.93
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0.81

local rendering  
on mobile device

poor quality good quality
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Limitations
• Dynamic object scalability is moderate 

• con:  per-pixel megaframe compositing is slow 
• pro:   object complexity is irrelevant  

• Lighting models are limited 

• Restricted by hardware decoder
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Related work
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precaching web search results
database queries

data types, behavior, and design choices  
are not applicable to VR domain.

offloading
compute offload
wearable AR on Glass
rendering
prelim. work on HMDs

requires good network connection.  
latency/quality less demanding. 
ignores local device storage.

caching objects as 
rendered images

QuickTime VR
reuse past renderings 
caching with impostors

static video playback only. 
focused on desktop environments. 
inaccuracies in object representation. 
very limited dynamic object support. 

warping cubemaps VR address recalculation requires specialized hardware  
added to high-end GPUs.



FLASHBACK in conclusion
• Avoids real-time rendering by pre-generating frames 

• flattens complex VR app behavior into data structures 
• Supports static scene and dynamic animated objects    
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 framerate ⬆   
latency ⬇           
energy ⬇

kevinaboos.web.rice.edu

http://kevinaboos.web.rice.edu
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Cache lookup with R-trees
• create minimally-overlapping 

bounding boxes around 3D points 

• characteristics fit our needs 
• good insertion and deletion 
• fast lookup is priority 
• better querying semantics



VR system in a nutshell
• Head-Mounted Display (HMD)  

• Smartphone-class hardware 
• Internal sensors and external trackers 

• Combine sensor readings → player pose 
• 3D position 
• 3D orientation
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Microbenchmarks
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car interior 115 MB
bedroom 730 MB
living room 2.8 GB
two-story house 8.7 GB
basketball arena 29 GB
Viking Village 54 GB

can be compressed  
using video codec for  
efficient deployment

Typical cache sizes (uncompressed)


