FLASHBACK

Immersive Virtual Reality on Mobile Devices via Rendering Memoization

David Chu Eduardo Cuervo Kevin Boos

Microsoft[®] Research

high graphic complexity photo-realistic, wide FOV

low latency < 25ms

high framerate 60+ FPS

mobile devices cannot meet these demands

Current VR Landscape

Tethered HMDs

Graphical Quality

Quality

Current VR Landscape

Tethered HMDs

Graphical Quality

Mobile HMDs

Current VR Landscape

Tethered HMDs

Graphical Quality

- Mobile HMDs
- FLASHBACK

FLASHBACK objectives

- self-contained on mobile device
 - desktop-level image quality
 - low end-to-end latency
- long battery life, low thermal output
 - no specialized hardware

Design

key idea:

pre-render all possible views for fast real-time replay

FLASHBACK design & challenges

- Pre-rendering [offline]
 - infinite input space
- Live playback [runtime]
 - huge cache, fast retrieval
 - inexact query matching
- Dynamic objects

FLASHBACK design & challenges

- Pre-rendering [offline]
 - infinite input space
- Live playback [runtime]
 - huge cache, fast retrieval
 - inexact query matching
- Dynamic objects

Pre-rendering: map pose to frame

pose (key)

frame (value)

Pre-rendering

Pre-rendering: megaframes

Pre-rendering: megaframes

position (key)

megaframe (value)

Further reducing the input space

- Automate iteration over possible inputs
 - Prune unreachable player positions
- Configurable quantization granularity

Full-coverage frame cache is available at runtime

FLASHBACK design & challenges

Pre-rendering [offline]
infinite input space

Live playback [runtime]

- huge cache, fast retrieval
- inexact query matching
- Dynamic objects

Live playback overview

e

pose

Building the cache

frame cache

L3: secondary storage – 9.2 ms

L2: system RAM – 8.7ms

GPU VRAM – **0.35 ms**

• raw, decoded megaframes

Spatially indexing the cache

- R-trees: fast, n-D nearest-neighbor search algorithm
- Two cache indices:
 - Universal
 - GPU-only

FLASHBACK design & challenges

- Pre-rendering [offline]
 - infinite input space
- Live playback [runtime]
 - huge cache, fast retrieval
 - inexact query matching
- Dynamic objects

Pre-rendering dynamic objects

- Extension of static scene
- 7D input space:
 - 3D relative position
 - 3D object rotation
 - 1D animation sequence
- Supports arbitrary motion paths and animations
 - but most are periodic

Automated megaframe capture

Dynamic object cache indexing

- A 7D query is not meaningful
 - Decompose into chain of queries
- = Faster queries
 - Can prune search space at each level

Dynamic + static compositing

composite megaframe

Evaluation

Evaluation setup

- HP Pavilion Mini + Oculus Rift DK2
 - Small weak computer approximates mobile device
 - Underperforms Samsung Galaxy S6 Gear VR

ift DK2 nates mobile device xy S6 Gear VR

Local Rendering

dra gana

15x higher framerate

(FPS) Framerate

8x lower latency

97x more energy efficient

longer battery life

less thermal discomfort

FLASHBACK maintains image quality

- Measure perceived visual quality via SSIM • Compares rendered scene against a pristine image

Limitations

- Dynamic object scalability is moderate
 - con: per-pixel megaframe compositing is slow
 - pro: object complexity is irrelevant
- Lighting models are limited
- Restricted by hardware decoder

Related work

precaching

web search resu database queries

offloading

compute offload wearable AR on rendering prelim. work on H

caching objects as rendered images QuickTime VR reuse past render caching with *imp*

warping cubemaps VR address reca

ılts S	data types, behavior, and design choir are not applicable to VR domain.
Glass HMDs	requires good network connection. latency/quality less demanding. ignores local device storage.
erings Dostors	static video playback only. focused on desktop environments. inaccuracies in object representation. very limited dynamic object support.
alculation	requires specialized hardware added to high-end GPUs.

FIASHBACK in conclusion

- Avoids real-time rendering by pre-generating frames
 - flattens complex VR app behavior into data structures
- Supports static scene and dynamic animated objects

framerate 1 latency 4 energy 4

kevinaboos.web.rice.edu

Backup Slides

References

[3] D. Lymberopoulos, et al., "Pocketweb: Instant web browsing for mobile devices," ASPLOS 2012. [4] [5] E. Cuervo, et al., "Maui: Making smartphones last longer with code offload," MobiSys 2010. B. Chun, et al., "Clonecloud: Elastic execution between mobile device and cloud," EuroSys 2011. [6] M. Gordon, et al., "Comet: Code offload by migrating execution transparently," OSDI 2012. [7] K. Ha, et al., "Towards wearable cognitive assistance," MobiSys 2014. [8] E. Cuervo, et al., "Kahawai: High-quality mobile gaming using gpu offload," MobiSys 2015. [9] [11] S. Chen, "Quicktime VR: An image-based approach to virtual environment navigation," SIGGRAPH 1995. [12] G. Schaufler, "Exploiting frame-to-frame coherence in a virtual reality system," IEEE VR AIS 1996. [13] G. Schaufler and W. Sturzlinger, "A Three Dimensional Image Cache for Virtual Reality," CG Forum 1996. [16] M. Regan and R. Pose," An interactive graphics display architeture," IEEE VR AIS 1993.

- D. Barbara, et al., "Sleepers and workaholics: Caching strategies in mobile environments," SIGMOD 1994.
- [10] Y. Degtyarev, et al., "Demo: Irides, attaining quality, responsiveness, and mobility for VR HMDs," MobiSys 2015.
- [14] J. Shade, et al., "Hierarchical image caching for accelerated walkthroughs of complex environments," SIGGRAPH 1996.
- [15] M. Regan and R. Pose, "Priority rendering with a virtual reality address recalculation pipeline," SIGGRAPH 1994.

Cache lookup with R-trees

- create minimally-overlapping bounding boxes around 3D points
- characteristics fit our needs
 - good insertion and deletion
 - fast lookup is priority
 - better querying semantics

Guttman, A. "R-Trees: A Dynamic Index Structure for Spatial Searching". ACM SIGMOD '84.

VR system in a nutshell

- Head-Mounted Display (HMD)
 - Smartphone-class hardware
 - Internal sensors and external trackers
- Combine sensor readings \rightarrow player pose
 - 3D position
 - 3D orientation

Microbenchmarks

Typical cache sizes (uncompressed)

car interior	115 N
bedroom	730 N
living room	2.8 G
two-story house	8.7 G
basketball arena	29 G
Viking Village	54 G

- 1B
- 1B
- βB
- βB
- βB
- βB

can be compressed using video codec for efficient deployment

